

DPP - 2

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/46

Video Solution on YouTube:-

https://youtu.be/OwQSGnhMQUI

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/19

- Q 1. If two nuclei of mass number A_1 and A_2 fuse together to form a nucleus of mass number A, then
 - (a) $A = A_1 + A_2$

(b) $A > A_1 + A_2$

(c) $A < A_1 + A_2$

- (c) A £ $A_1 + A_2$
- Q 2. Thermal neutron means:
 - (a) neutron being heated
 - (b) the energy of these neutrons is equal to the energy of neutrons in a heated atom.
 - (c) these neutrons have energy of neutron in a neutron gas at normal temperature
 - (d) such neutrons gather energy released in the fission process
- Q 3. 10¹⁴ fissions per second are taking place in a nuclear reactor having efficiency 40%. The energy released per fission is 250 MeV. The power output of the reactor is
 - (a) 2000 W

(b) 4000 W

(c) 1600 W

- (d) 3200 W
- Q 4. Which of the following is a fusion reaction?
 - (a) ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He$
 - (b) $_{0}^{1}n + _{7}^{14}N \rightarrow _{6}^{14}C + _{1}^{1}H$
 - (c) ${}_{0}^{1}n + {}_{92}^{238}U \rightarrow {}_{93}^{239}Np + \beta^{-} + \gamma$
 - (d) ${}_{1}^{3}H \rightarrow {}_{2}^{3}He + \beta^{-} + \gamma$
- Q 5. For a chain nuclear fission of U235 the moderation of neutron is a must because very high energy neutron
 - (a) will collide inelastically with the nucleus and so there is no fission
 - (b) will collide elastically with the nucleus and so there is no fission
 - (c) will be trapped in the nucleus and hence no fission
 - (d) repelled by nucleus
- Q.6 200 MeV energy is released due to fission of U^{235} by slow neutrons. If the output power from a atomic reactor is 1.6 MW, then rate of fission will be -
 - (a) $5 \times 10^{16} \, S^{-1}$

(b) $10 \times 10^{16} S^{-1}$

(c) $15 \times 10^{16} \, S^{-1}$

- (d) $20 \times 10^{16} \, S^{-1}$
- Q 7. The amount of U^{235} in kg which is to be used per hour in a nuclear reactor of capacity 100 kW (E = 200 MeV/fission) -
 - (a) 0.45×10^{-5}

(b) 4.5×10^{-5}

(c) 4.5×10^5

(d) 45×10^5

P hysicsaholics

- Q 8. A fusion reaction takes place at very high temperature because -
 - (a) atoms get ionized at high temperature
 - (b) molecules get decomposed at high temperature
 - (c) nuclei get decomposed at high temperature
 - (d) due to their high energy nuclei overcome their mutual repulsion and combines.
- Q 9. Two deuterons are moving towards each other with equal speeds. What should be their initial kinetic energies so that the distance of closest approach between them is 2 fm?
 - (a) 0.36 MeV

(b) 0.51 MeV

(c) 1.02 MeV

(d) 7.8 MeV

Q 10. A stationary 238U nucleus decays by a emission generating total kinetic energy T $_{92}^{238}U \rightarrow_{90}^{234}Th+_{2}^{4}\alpha$

What is the kinetic energy of the α particle?

- (a) slightly less than T/2
- (b) T/2
- (c) slightly less than T
- (d) slightly greater than T
- Q 11. In the nuclear process,

 $^{11}_{6}C^{3}_{4}$ $^{11}_{5}B + b^{+}_{5} + X$, X stands for –

(a) neutrino

(b) g-particle

(c) a-particle

- (d) Neutron
- Q 12. A nucleus disintegrates into two nuclear parts which have their velocities in the ratio of 2:1. The ratio of their nuclear radii will be
 - (a) $3^{1/2}$: 1

(b) 1: $2^{1/3}$

(c) $2^{1/3}$: 1

(d) $1:3^{1/2}$

Answer Key

Q.1 a	Q.2 c	Q.3 c	Q.4 a	Q.5 b
Q.6 a	Q.7 a	Q.8 d	Q.9 a	Q.10 c
Q.11 a	Q.12 b			